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Technological challenges have been identified (Ref. 1)

that are driving the development of advanced space
propulsion systems. The following set of missions

presents technological challenges that must be

addressed to meet national space transportation needs:
(I) Modern expendable launch systems of small

and medium capacity

• Payload weight: 20 000 to 50 000 lb low

Earth orbit {LEO)

• High reliability
° Low cost

• Improved payload-to-lift mass

(2) Unmanned heavy-lift launch capability to
LEO

• Payload weight: greater than 100 000 Ib

• Payload envelop: as um'estricted as feasible
• Cost: substantial reductionover current

systems (full or paaial reusability will be

determined by economic tradeoffs)

(3) Reusable orbital transfer system to raise pay-

loads from LEO to higher altitude, sunsynchronous or
geostationary orbit and to return them

• Geostationary payload weight: greater than
20 000 Ib

• Payload envelope: as unrestricted as
feasible

• Robotics: capable of interfacing with

intelligent front-end for routine servicing

operations

(4) Advanced space transportation system to

replace the space shuttle after the turn of the century
• LEO payload weight: from 20 000 lb to

potentially greater than 100 000 lb

° Payload envelope: as unrestricted as
feasible

° Automation and robotics: used to reduce

turnaround time and mission costs, with

special emphasis on self diagnostics
• Tradeoffs will be made between "Shuttle

II" and the transatmospheric

• Aerospace Plane

(5) High-energy interplanetary transfer system to

meet objectives of the National Commission on Space

• High specific impt, ise, high-thrust, long-life

propulsion systems to minimize duration of

trips to Mars (e.g., 10 000 lb (44 000 N)

or greater thrust, 800-sec specific impulse)

• High specific impulse, long-life propulsion

systems for planetary' scientific missions

(e.g., very low thrust, greater than

1000-sec specific impulse)

• Nuclear-electric or direct thrust engines are
candidates for these missions

• Hybrid power and propulsion systems are

another attractive option

Some of the specific technology-driver missions

for space science for the mid-1990's follow:

The Earth Observing System (EOS) (Fig. It,

with three EOS platforms in sun-synchronous orbits,

is designed to study the Earth's atmosphere. It is be-

lieved that automated or robotic servicing will be

required at the operational altitude of the platform

during its 20-yr life.

The Large Deployable Array (LDR) (Fig. 2_ is

an astronomical observatory design that will operate

in the 30-to 1000-_tm range.
It is expected that maintenance will occur on a

3-yr schedule.

During a Mars Sample Return Mission (MSRI

(Fig. 3), samples at several depths and at widely
dispersed sites on the Martian surface will be

obtained and returned to Earth in a pristine condition.

SPACE EXPLORATION INITIATIVE

On February 16, 1990, President Bush approved

policy for the Space Exploration Initiative. The goal

of this initiative (Ref. 2) is to place Americans on

Mars by the year 2019. The initiative includes both

lunar and Mars program elements, as well as robotic
science missions. The near-term focus will be on

technology development. This will be done by

searching for new and innovative approaches and

technology, and by investing in high-leverage, innova-

tive technologies with potential to make major impact

on cost, schedule, and performance. Mission, con-

cept, and analysis studies will be done in parallel with

the technology development.
A baseline program architecture will be selected

after several years of defining two or more reference

architectures while developing and demonstrating

broad technologies (Refs. 3 and 4). NASA will be

the principle implementing agency, whereas the

Department of Defense and Department of Energy

will have maior roles in technology development and

concept definition. Some of the space programs

discussed below have been absorbed or replaced by
this Space Exploration Initiative.
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SPACEPROGRAMS

TheNationalAeronauticandSpaceAdministra-
tion (NASA)hasseveralprogramsthatrequiread-
vanced,space-basedpropulsionsystems.Thesepro-
pulsionsystemsmaybequitedifferentfromthose
usedin Earth-to-orbitlaunchvehicles.Eachprogram
hasadifferentsetof missionrequirementsthatdrives
thedevelopmentof differentspacepropulsionsystems
(Refs.5 to 7). Forexample,thepropulsionsystem
usedto keeptheSpaceStationFreedom(Fig.4) in
orbitwill bequitedifferentfromthatusedfora
mannedMarsmission.To answerthequestionspre-
sentedearlier,wemustexaminetheNASAspace
programsthathaveadvancedspacepropulsionneeds.
Eachprogramidentifiesspecificmissionrequirements
to bemetby thepropulsionsystem(Ref.8).

Duringthedevelopmentof aspacetransporta-
tionsystem,propulsionstudiesandvehiclestudies
mustbeiterated tmtil the propulsion requirements are

defined for the vehicle. Following the definition of

the propulsion requirements, mission-focused propul-

sion system studies identify the specific required

propulsion system. Depending on the acceptable

mission scenario, very different propulsion systems
and vehicles can result in successful space transfer.

However, since studies have not matured sufficiently,

we are unable to specify what propulsion system will

be used for an actual mission. Mission scenario stud-

ies indicate that advanced, reliable, long life, low

weight, efficient, high power, and variable-thrust

space propulsion systems are needed.

Space propulsion systems may be based on elec-

trical, chemical, or nuclear processes (Table I). The

design, operation, maintai nabi lity, reliability, failure

modes, health monitoring, and mission requirements

for these propulsion systems will vary considerably.

Therefore, it is natural to examine each of these sys-

tems on the basis of the physical process used to

produce thrust. Before the types of propulsion sys-

tems being considered, developed, or used are

described, it is appropriate to identify the programs

that support the development of these propulsion

systems.

Chemical Propulsion Program

Project Pathfinder (Ref. 9) from the NASA

Office of Aeronautics and Space Technology t

(OAST) is a research and technology program

designed to make new missions in space exploration

possible and strengthen the technology base in sup-

port of the civil space program. Pathfinder has a

distant horizon that is reached by building on the

space shuttle and space station programs. Pathfinder
addresses technologies that support a range of space

TABLE I. - SPACE PROPULSION SYSTEMS

Engine type

Chemical

Electrical

Nuclear

Principle of

operation

Recomposition

Decomposition

Electrostatic

Electrothermal

Electromagnetic

Nuclear fission

Propulsion system

Liquid oxygen/

liquid hydrogen

(LOX/H2) ttu'uster

Hydrazine thruster

Ion thruster

Resistojet, arcjet,
microwave thruster

Magnetoplasmadynamic

Solid core rocket

Gas core rocket

1Now NASA Office of Aeronautics and Exploration Technology (OAET).



missionsincluding:areturnto theMoonto buildan
outpost(Fig.5), pilotedmissionsto Mars(Fig.6),
andcontinuingexplorationof Earthandtheother
planets.

ProjectPathfinderhasfourmajorcomponents:
(I) ExplorationTechnology,(2) SpaceOperations,
(3)Humans-in-Space,and(4)TransferVehicleTech-
nology.TheExplorationTechnology,SpaceOpera-
tions,andHumans-in-Spacecomponentsinclude
planetaryroverdevelopment,surfacepower,remote
sampleacquisition,opticalcommunications,autono-
mousrendezvousanddocking,resourceprocessing,
in-spaceassemblyandconstruction,cryogenicfluid
depots,spacenuclearpower,extravehicularsuits,
humanperformance,andclosed-loopsupportsystems.
TheTransferVehicleTechnologyis of particular
interestbecauseit supportstransportationto andfrom
geostationaryEarthorbit, theMoon,Mars,andother
planets.Specificgoalsof theTransferVehiclecom-
ponentincludesignificantreductionin themassthat
missionsrequirefor launchinto low Earthorbit and
in transit,aswell asreductionsin thetimerequired
for transit. Thekeyelementsof theTransferVehicle
Technologythrustarethechemicaltransferpropul-
sionresearch,cargovehiclepropulsiondevelopment,
high-energyaerobrakingdevelopment(Fig.7),auton-
omouslanderdevelopment,andfault-tolerantsystems.

TheTransferVehicleTechnologythrustledto
the initiationof theNASAOASTPathfinder
ChemicalTransferPropulsionProgram(Refs.10
and 11). Thisprogramwasinitiatedto providethe
technologyto designanddevelophighlyreliable,
reusablecryogenictransfervehicleenginesthatare
faulttolerant,andhavelonglives. Theywill be
high-performance,liquidoxygen/liquidhydrogen
(LOXA-I2)expandercycleenginesfor space-based
transfervehiclesandMoonandMarslanders.

Electric Propulsion Program

NASA OAST's Propulsion, Power, and Energy

Division supports an electric propulsion program

(Refs. 12 to 15) for a broad class of missions. Three

types of electric propulsion systems are being devel-

oped (Refs. 12 to 29): electrostatic (ion), electro-
thermal (resistojet, arcjet, microwave, and radiowave),

and electromagnetic (magnetoplasmadynamic, or

MPD). Resistojets are currently used on geosynchro-
nous communications satellites.

Nuclear Propulsion Program

In 1987 the Air Force Systems Command reini-

tiated a Direct Nuclear Propulsion Program (Refs. 1,

30, and 31). The goals of this program are to

develop a high-impulse, high-thrust, low-weight pro-

pulsion system. This propulsion system would be
used for orbital transfer vehicles, fast launch intercep-

tors, intercontinental ballistic missiles, and other mis-

sions. In October 1990 NASA's Propulsion, Power

and Energy Division initiated a Nuclear Thermal

Propulsion Program. A Nuclear Electric Propulsion
Program will begin October 1991.

PROPULSION SYSTEM CHARACTERISTICS

The operating characteristics of chemical, electri-

cal and nuclear propulsion systems are quite different

(Ref. 32). Thrust and specific impulse can be used

for making general comparisons between propulsion

systems. Table II indicates the range of thrust T

and specific impulse Isp for electrical, chemical, and
nuclear propulsion systems. Thrust is the amount of

force that a propulsion system generates. The greater

the thrust, the greater the acceleration of the vehicle.

Specific impulse (in seconds) is the thrust (in
Newtons) that can be obtained from an equivalent

rocket which has a propellant weight flow rate (in

Newtons per second) of unity. (Specific impulse is

somewhat analogous to the number of miles per gal-
lon of fuel for automobiles.) Electric propulsion

systems have lower thrust capabilities than chemical

or nuclear propulsion systems do. Chemical propul-

sion systems yield the highest thrust levels available
to date. However, direct nuclear propulsion is

expected to yield greater thrust levels than chemical

propulsion. The specific impulse for electrical resis-
tojets and arcjets are comparable to chemical LOX/H 2

and hydrazine propulsion systems. The ion, MPD,

and nuclear propulsion systems have the highest spe-

cific impulses, and they can exceed those of other

systems by an order of magnitude.

Classes of propulsion systems that will be
needed to meet mission requirements can be identified

from table II and from preliminary mission propulsion

requirements. High specific impulse engines, such as

ion, MPD, and nuclear propulsion systems, will be
needed for interplanetm'y transfer. Low thrust

engines, such as resistojet, arc jet, and hydrazine



TABLE II. - THRUST AND SPECIFIC IMPULSE

Engine type

Chemical

Electrical

Nuclear

Propulsion system

LOX/H 2 thruster

Hydrazine thruster

Ion thruster

Resistojet

Arc jet

Microwave thruster

Magnetoplasma-
dynamic (MPD)

Nuclear thermal

rocket (NTR)

Specific impulse,

Isp',
seconas

300 to 500

280 to 300

3500

290 to 380

400 to 1100

200to 600

1500 to 8000

800 to 1200

Thrust,

T,
Newtons

(0.100 to 2222)x 103

(180 to 360)x 10-3

(65 to 510)x10 -3

(180 to 490)x 10-3

(10 to 212)xlff 3

50 to 200

(333 to 1000)x 103

engines, are needed for station keeping and drag
makeup for orbiting systems and for manned maneu-
vering units. High-thrust engines are needed for

cargo orbit and orbital maneuvering vehicles (Fig. 8).

BASIC PRINCIPLES OF SPACE

PROPULSION SYSTEMS

In this section, each of the candidate propulsion

systems is discussed, the operating principles and

current developmental status of each system are indi-
cated, and any system features that limit the useful

lifetime of these propulsion systems are highlighted.

The specific researchers that are developing these

systems can be identified in the references quoted.

Chemical Propulsion

Hydrogen/oxygen thruster. - The hydrogen/

oxygen (LOX/I-I2) thruster uses chemical recomposi-

tion to produce thrust. Hydrogen and oxygen are
injected, mixed and ignited in the combustion cham-

ber (Fig. 9, Refs. 33 to 40). The ignited mixture

burns to form hot gaseous reaction products that are

accelerated via the throat and nozzle assembly to

produce thrust. The RLIOA-3-3A engine, which is

the only upper-stage, LOX/H 2 thruster in operation,

was designed to be expendable. Life-limiting failure
modes have not been observed for reusable, space-

based, gaseous O/H thrusters (Fig. 10), therefore, the
lifetimes are not known.

Hydrazine thruster. - The hydrazine thruster is

based on the principle of chemical decomposition

(Fig. 11). The propellant, hydrazine, is injected into

the catalyst bed (Refs. 41 to 46), and the catalyst

causes the hydrazine to spontaneously decompose into

NH 3, N2, and H2 gases. The gases are exhausted via

the nozzle to produce thrust. In an augmented hydra-
zinc thruster (Fig. 12), the gases are heated further

before exiting. The service life of these thrusters is

limited by the useful life of the catalyst bed. The

failure is due to a break down of the catalyst into fine
particles that are eliminated via the exhaust.

Electric Propulsion

Resistoiet. - A schematic diagram of a resistojet
is shown in Fig. 13. Propellant is heated via a resis-

tively heated heat exchanger. The heated propellant
(1400 °C) is expanded and exhausted via the nozzle

to produce thrust (Refs. 47 to 66). The propellant

may be introduced to create a vortex flow pattern

within the heat exchanger. The candidate propellants

are CO 2 (carbon dioxide), CH 4 (methane), H 2 (hydro-

gen), NH 3 (ammonia), N 2 (nitrogen), steam, and
N2H 4 (hydrazine). State-of-the-art resistojets are
shown in Figs. 14 to 18. Heater mass, and material



surfacechanges, and grain growth rates affect the life

of these systems. The thruster life also depends on

the propellant used.

Arciet. - The arcjet (Fig. 19) uses an electric arc

to heat the propellant directly. Here the propellant is

passed between two electrodes while an arc is struck

and maintained to heat and expand the propellant.

Then the heated propellant (hydrazine, hydrogen, or

ammonia) is exhausted through the nozzle to produce

thrust (Refs. 67 to 89). Several designs using differ-

ent materials have been studied (Figs. 20 to 23).

The lifetime of an arcjet is limited by electrode,

nozzle, and injector wear. The electrode wear may be

in the form of spalling due to thermal shocks or local-

ized melting from high current densities. Electrode

wear may also occur when there are chemical incom-

patibilities. The arcjet reliability is not known; how-

ever, the starting reliability indicates that a large
number of starts does not affect the steady state

performance.

Microwave thrusters. - Microwave and radio-

wave thlaJsters heat the propellant without the use of
electrodes (Refs. 90 to 96). The microwaves heat the

propellant (argon, nitrogen, or helium) in the dis-

charge chamber (Fig. 24), and the heated propellant

(2000 K) exits via the nozzle to produce thrust.

Nozzle melting and erosion have limited the thruster
life.

Ion thruster. - An ion thruster is shown in

Fig. 25. Xenon or mercury vapor is ionized in an

ionization chamber, and the positively charged parti-

cles are accelerated via the accelerator grid. Then,

neutralizer injects electrons to neutralize the accelerat-

ed, positively charged particles. This accelerated,

neutralized mass produces the thrust (Refs. 97

to 124). The magnets, the screen, and accelerator

grids make up the ion optic system (Figs. 26 and 27)
that collimates the accelerated particles. The typical

path that the ions follow is also shown in Fig. 25.
Unexpected extinctions of the discharge are due to

thermal design and lack of ignition control. Sputter

erosion of the discharge chamber, screen, baffle, and
cathode limits the life of ion thrusters. Metallic

flakes, which form as a result of this sputter erosion,

may spall and short out the ion optics by bridging the

gap between the screen and accelerator grids. The

cathode tubes also oxidize and deform during thruster

operation.

Magnetoplasmadynamic (MPD) thruster. - The

magnetoplasmadynamic thruster (Figs. 28 to 31) looks

similar to the arcjet; however, the principles of opera-

tion are quite different. The MPD thruster is based

on electromagnetic principle as opposed to the arcjet,

which is based on electrothermal principle. The pro-

pellant is ionized by the current flow between the

anode and cathode. This current flow induces a mag-

netic field that causes expansion of the arc and accel-

eration of the ionized gas to produce thrust (Refs. 125

to 136). The propellants used are xenon, argon,

hydrogen, helium, ammonia, neon, nitrogen, and

lithium. The lifetimes of these propulsion systems are

limited by erosion of the cathode and insulator.

Nuclear Propulsion

Two types of nuclear propulsion systems are

being developed: a nuclear thermal propulsion (NTP)
system and a nuclear electric propulsion (NEP) sys-

tem (Refs. 102 and 136). The NEP system uses a

nuclear reactor to provided electric power to an elec-

tric propulsion system (e.g., an MPD or ion thruster).

The NTP systems may use either a solid core reactor

(SCR) or a gas core reactor (GCR).

Solid core nuclear thermal rocket. - A solid core

nuclear propulsion system (Refs. 137 to 146) uses
fissioning solid uranium carbide particles to heat

hydrogen (Figs. 32 to 36). The hydrogen is heated as
it flows down the coolant tubes of the fuel elements.

Then it is accelerated via the nozzle to produce thrust.

Both fuel and support elements are used in forming
the SCR. The rate of reaction in the SCR is con-

trolled by the graphite matrix supporting the uranium

carbide particles that make up the fuel elements and

by ZrH moderators contained in the support elements.

Corrosion of the graphite moderator/heat exchanger

by hot hydrogen limits the life of the SCR propulsion
systems.

Gas core nuclear thermal rocket. - Gas core

nuclear propulsion systems (Refs. 147 to 152) use

fissioning uranium gas/plasma to heat hydrogen. Two

types of gas core (open- and closed-cycle) rockets are
being considered. An open cycle, porous wall,
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sphericalgascorerocketengine uses the nuclear

thermal energy of the fission gas/plasma to heat an

envelope of hydrogen propellant (Fig. 37). The

hydrogen expands and flows out of the nozzle to pro-
duce thrust. Both uranium and hydrogen are

exhausted in this open-cycle system. A closed-cycle

nuclear light bulb (NLB) rocket heats hydrogen that is

behind thermally transparent and cooled SiO or BeO

walls (Figs. 38 to 40). This arrangement isolates the

uranium fuel and fission products from the propellant
exhaust.

HEALTH MONITORING SCHEME FOR SPACE

PROPULSION SYSTEMS

There are three levels of monitoring (Fig. 41)

that needs to be done for successful health monitoring

of space propulsion systems (Ref. 153.). At the first

level, system wide global monitoring is done continu-

ously with a limited amount of sensors. This level of

monitoring is used to identify global changes in the

response of the propulsion system. If a significant

variation is identified or flagged then additional sen-

sors are activated fox"Level 2 monitoring. Here anal-

ysis of the sensors response is used to identify areas

that require local inspection (Level 3). Specialized

tools are then used to fully characterize the suspect

area. These tools may be operated manually or

remotely and they may be deployable.
A list of nondestructive evaluation tools that

may be used at any monitoring level is shown in

Fig. 42. The variable that each of these tools can
monitor is also shown. The most common NDE tools

are acoustic emission, borescope, computed tomogra-

phy, eddy current, holography, sherography, thermog-

raphy, ultrasonic and x-ray radiography. Many of
these tools can monitor the same variable. For exam-

ple, when looking for cracks, acoustic emissions,

borescope, computed tomography, eddy cun'ent, strain

gauge, ultrasonic and x-ray radiography can be used

successfully. In practice, however, only one or two

of these techniques will be used. A good example is

a long narrow width crack in a nonconducting
ceramic. Eddy current, x-ray, borescope, and com-

puted tomography techniques will be of limited value.

Ultrasonic evaluation will yield superior results

because it is sensitive to the acoustic impedence dif-

ference of the crack boundary.

Figure 42 also indicates that any one tool is

sensitive to several variables. In particular, ultra-

sound is sensitive to the presence of cracks, delamina-

tions, stress, porosity, thickness, grain size, recrystal-
lization, interlaminar and fiber-to-matrix bond qt,ality.

Again, in practice only a few of these variables will
be affected. For example, a monolithic material

mechanical cycled at low temperatures (a tempe,atu,'e

below grain growth or recrystallization) should not

exhibit porosity, grain size, recrystallization, delamin-
ations, interlaminar and fiber-to-matrix bond quality

variations. However, residual stress and cracking will

be expected.

In general, the expected failure modes will guide

the selection of the appropriate NDE tools.

APPLICATIONS OF NDE FOR SPACE

PROPULSION SYSTEMS

Ultrasonic Monitoring Electrode Shape for Arcjet

and Magnetoplasmadynamic Thrusters

It has been shown previously that the life of the

arc jet and magnetoplasmadynamic thrusters is limited
by the degradation of the electrodes. The tips of

these electrodes tend to melt at the high current densi-

ties used. In a feasibility study an ultrasonic signal is

used to monitor the condition of the electrode tip.

The experimental setup is shown in Fig. 43. An
ultrasonic signal is sent down the length of the elec-

trode to interact with the tip. The signal echoes off

of the tip and returns to the same ultrasonic trans-
ducer. In an effort to simulate electrode wear due to

melting, the tip is ground away while being moni-
tored with ultrasonics. (Note: It has been observed

in a separate study that the,'e is a slight change in the

ultrasonic signal due to increased electrode tempera-

tures up to 2100 °C.) The damaged area of the tip is

characterized by the diameter D of the ground region

(Fig. 43). An increase in damage corresponds to an
increase in the diameter D of the ground region.

The ultrasonic amplitude and change in transit

time are shown in Fig. 44. A typical wave form is

also shown. The amplitude increases while the transit

time decreases as diameter of the damage zone

increases. The increase in amplitude is due to the

decreased focal scattering at the tip. That is the

ultrasound is now being backscattered in a planar

manner due to the flatness of the ground region. The
decrease in transit time is due to the decreased

length of the electrode. The length of the electrode
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(12.7cm)decreasedby 70/amor about
0.0006percent.

Eddy Current Monitoring of Molybdenum Film
Thickness for Ion Propulsion Systems

dramatic decrease in absorption of x-rays. This type

of monitoring may also be done by making intensity

measurements at a point at a fixed distance from a

radioactive or x-ray source. That is, x-ray imaging is

not required.

The ion propulsion systems life is limited by the
spalling of metallic flakes that short out the electric

potential between the accelerating and screen grids.
The growth, thickness and presence of these flakes

may be monitored with eddy cun'ents. As a demon-

stration, a molybdenum wedge shaped slab was

formed on a glass substrate (Fig. 45). A 3 MHz eddy
current probe was scanned across the substrate side as

shown. The eddy cun'ent response increases with

increasing thickness. Here, the molybdenum thick-

ness varied from 150 to 1000/am. The increase in

the eddy current for increased thickness is due to the

increased loading that the additional molybdenum

mass puts on the probe. The frequency of the eddy
cun'ents can be increased to be sensitive for thinner
films a few 100/k thick.

xz_-a.y or Radiation Monitoring of Catalyst

Loss for Hydrazine Thruster

The life of hydrazine thrusters is limited by loss

of the catalyst material during use. The catalyst bed

is made up of particles that have been coated with a

catalyst material. Representative materials are alumi-

num oxide particles coated with platinum. The

weight percent of the catalyst ranges fi'om about 0.3

to 50.0 depending on the materials used.

An aluminum oxide pellet (Fig. 46) was formed

by mechanically pressing aluminum oxide - platinum
power mixtures. One half of the pellet mold was

loaded with 10 percent weight of platinum and the

other half was loaded with 15 percent weight plati-

num. This mTangement represents a hydrazine

thruster that has lost approximately one-third of its

catalyzing material.

An x-ray radiograph clearly shows the variations
in the amount of the catalyst present. The left side

(the lighter half) of the pellet corresponds to the low-

er platinum catalyst weight percent. This intensity of
the x-ray is sensitive to both the x-ray absorption
properties and the total mass. Here the decreased

loading of 5 percent weight of the catalyst shows a

DISCUSSION AND SUMMARY

There are many space propulsion systems that

are being developed. The principles of operation vary

considerably between systems. Each system has its

own particular types of failure modes. However, it is
clear that material losses and material microstructural

changes are the dominant mechanisms that affect the

lifetimes of these advanced systems. These material
variations are identified as mass losses due to electri-

cal sputter erosion, oxidation or chemical erosion, and

microstructural changes such as melting and grain

growth. Feasibility experimental studies indicate that
nondestructive evaluation tools such as ultrasonic,

eddy ct,rrent and x-ray may be successfully used to

monitor the life limiting mechanisms of space propul-

sion systems. Encouraging results were obtained for

monitoring the life limiting failure mechanisms for

three space propulsion systems; the degradation of

tungsten arcjet and magnetoplasmadynamic elec-

trodes; presence and thickness of a spallable electri-

cally conducting molybdenum films in ion thrusters;

and the degradation of catalyst in hydrazine thrusters.

The difference between past propulsion systems
and the next generation of space propulsion systems

will be the incorporation of health monitoring strate-
gies. Lifetime estimates have been obtained for some

of these space propulsion systems. However, non-
intrusive methods for monitoring and verifying the

propulsion system's "age" and health need to be

developed. In addition, the reliabilities for most of

these propulsion systems remain in question, and

methods of determining these reliabilities at a reason-

able cost have not been developed.

These space-based propulsion systems provide a

rich field of opporttlnity for nondestructive evaluation

and health monitoring researchers. Nondestructive
evaluation and health monitoring researchers will

impact the development of space propulsion systems

as they become active in the development of future
directions.
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FIGURE 1. - ARTISF'S CONCEPT OF E^Rltl OBSERVING SYSIER (EOS) POt^R ORBITING MISSION.
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FIGURE 2. - ARTIST'S CONCEPT OF LARGE DEPLOYABLE REFLECTOR.
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FIGURE 3. - ARTIST'S CONCEPT OF TIlE LANDER, ROVER, AND COffBINED SAMPLE RETURN SYS1ER AND LAUNCIIER ON 1lIE SURFACE Of MARS.

19



FIGURE 4. - SPACE STATION FREEDOM.
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fIGURE 5. - ARIIST'S EONCEPI OF LUNAR BASE.

FIGURE 6. - ARIISI'S CONCEP[ OF MARS MISSION,
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FIGURE 7. - ARIISI'S CONCEPT OF AEROBRAKIflG VEIIICLE.



FIGURE 8. - CURRENTSPACE ROBOTCONCEPTORBITAL MANEUVERINGVEHICLE WITH MANIPULATIVE CAPABILITY.
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23



ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

IlI;URi 10. SPACI SIAl ION IIYI}ROGIN/OXYGLN IIIRUSIFRS.

HYDRAZINE

(N2H 4)

FROM

FUEL TANK

7CATALYST BED

/ (SHELL q05)
/I

VALVE _

*_o'o _ o': T

I _'Ob{_;'_l I _ NH 3 N2,
'°g_ _" H

/ _ NOZZLE J
/-INJECTOR

SCREEN ]

FIGURE 11. - HYDRAZINE FHRUSTER.

/-SCREEN

HEATING

ELEMENT

VALVE

_';o_6 _.

FUEL TANK _ HEAT
t NOZZEE

L]NJECTOR EXCHANGER

FIGURE 12. - AUGMENTED HYDRAZINE THRUSTER.

24 On!i.ilNA. PAGE IS
OF POOR QUALITY



ELECTRICAL

POWER

PROPELLANT_(fV_.._

FLOW I"JI E

v ,'" ZHEAT EXCHANGER
/

'-RESISTANCE HEATING ELEMENT

PROPELLANT

POWER LEADS

FIGURE 13. - RESISTOJET.

VORTEX

HEATER

PROPELLANT
FLOW "--w"i C_

ALUMINA J'_

r

F'"......................':'_ .......................................L_'-_L_'-_w.i_I ''-'_'| _..,,. ..................... _ ",_ 2___

i .......................... • ..................................

LGRAIN-STABILIZED PLATINUM

"w,PROPELLANT INLET_ /ItPLATINUM-COATEDcoILSUPPORT STRUCTuREALUMINAHEATER

i.............:_1 -THER"_HO_E ,' .CO_LE_HEATER
..............F_>7-'_I ." . FLOW SPIRALING CHANNEL , , /

," _Y'kJA......._o _ o u o o u o .....,......................:..........
LEADS _- F////A

POWER "--_ _ INNER TUBE (HEAl EXCHANGER) AND HEATER _'-HEATEXCHANGER CHANNELS (IG)

FIGURE lq. - RESISTOJET COILED-TUBE HEAT EXCHANGER.

25



T
2.q

DI/V'I-

EIER

1.

Pt-SHEATED HEATER

(PI CENTER CONDUCTOR,

MoO INSULATOR, Pt SHE.ATH)-._

L. PROPELLANT

INLET

0 HEALER

0 GAS FLOg

/ I
/

LOOTER CASE I /

(INCONEL) I L PIOUNTING
I I_ACKET

NULTICHANNEL I

HEAT EXCHANGER_

FIGURE 15, - CROSS-SECTION Of: RESISTOJET HODEL.

O.OqO DIAMETER

THROAT--._
\
\

CONE/TRURPET

NOZZLE,-./

I

\ I

\

I
/ PLUNE

iI SH[ELD

I L Ni RADIATION SHIELDS
t.

P! RADIATION SHIELDS

ALL DIMENSIONS IN INCHES.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

FIGURE 16. - ENGINEERING MODELOF RESISTOJET.

.+6



RESI STO.IET,
14/0 THRUSTER

FIGURE17. - INITIAL OPERAIINGCONFIGURATIONOF RESIS]OJET.

WA[ER VAPORIZER-'\
\
\

FLUID MANIFOLD-_ x \

\ X
\

\
\

\

\
\

\

\

\

\
\

\

POWERCONTROLI_ER--7 /-CHECKVALVE
/ /

/ / /-PRESSUREREGULATOR/ /
/ / /
/ / /

/ / /--FILTER
/ / /
/ / / z-LATCIIINGVALVE
/ / /

/
/
/

/
/

MOUNTSTRUCTURE-7
/
/
/
/
/
/
/
/

/

PRESSURE /
TRANSDUCER J

/

/
/
I
I
I
I

£ELECTRICAL POWER LEAD

FIGURE18. - LAYOUTOF RESISTOJETMODULE.

\
X_ RESISTOJET

27



'SPACEC RAFT

BATTERIES

@

ARC JET

CATALYST

BED

FIGURE 19. - ARC,JET.

PROPELLANT INLEIS

ROLYBDENU/'! HOUSING

BORON NITRIDE

]NSULATORS

COOL [NG PASSAGES

_l _ ROUNT ING

SEALS J
FLANGE

ANODE (+)

TUNGS1EN NOZZLE

FIGURE 20. - 30-kW THERHAL ARCJET ENGINE D_SIGNED BY GIANNINI SCIENTIFIC CORPORATION.

28



OUTER BODY,

;, TZM(O.STI, 0.1Zr, No)
\

PLUG

ELECTRICAL
CONTACT, W/Cu -'J

GAS

INLET

\

/

/
I

/
I

L--ADJUSTI_NT

SLEEVE, RACOR

SECTION A-A

FIGUIg. 21. - N2H2 ARCJET DESIGN.

_P GAP t

T-FRONT INSULATOR __ _ _G "_

MODIFIED _ REAR INSULATOR \\ ANODE,.7 "=-

// " " " I'-- ', ", I/ _ [_? :-.-i:_ :::: :: / ELECTRODE
__, "| .', '\ _ j _EpCRATION

_ I_TANGENTIAL GA_\I\ \ ._.../_ / _ _ CHN'_ECROP;ALL......

_IN_ECTION.O'ES_', _,_ _ROUG.CATHODESURFACE
_ ',, ANODE HOUSING " / ""-- SMOOTH CATHODE SURFACE

',-IN-LINE '-PROPELLANT LINE _ t t

ORIFICE _ 1

FIGURE 22. - CUTAWAY VIEWS OF ARCJET.

29



ORIGINAL PAGE

BLACK AND WHITE PHO'[OGRAPH

FIGURE 23. - PLASMADYNE 1-kW ARCJEI IIIRUSTER FLIGIIT SYSIEM,

FUEL I

I

_-RF COIL
/

I I

I I

BN OR
AI203
NOZZLE

THERMAL IZED

PROPELLANT

MICROWAVE ENERGY

--.D.- NOZZLE

/--...
L DISCHARGE

CHAMBER

FIGURE 24, - MICROWAVE IHRUSIERS.

3O



Xe, Hg

VAPOR

®®Q ®
® @®®

J®®® ®

IONIZATION

_®

/ACCELERATOR

NEUTRAL IZER

®®

,- ION SCREEN ACCELERATOR

SOURCE GR ID, GR ID,

SURFACE, %0 V 2500 V

, 5oov []

! I

IONI PATH "_'_0

FIGURE 25. - ION THRUSTER.

_MAGNETS

/_XX\ S

\ N _--. \--.\\\\\\\\_\\_\-_l

S ' , . J_

'_'_- ANODE

SCREEN

ELECTRODE

DISCHARGE

BAFFLE

MAIN

CATHODE

N
_"--CAIHODE

Ii// KEEPER

,,--PROPELLANT

PLENUM

,-- ACCELERATOR

ELECTRODE

v///////,,/////,,///// " ,'" , "1

N S

FIGURE 26. - SECTION VIEW OF DIVERGENT MAGNETIC FIELD ION

THRUSTER.

FIGURE 21. - 10-kW XENON ION PROPULSION MODULE.

31

OR!,.,!F,,,L '_'..... "
_';T) 't./H !TE o _C.ICG _/_, P t,-1



HIGH

VOLTAGE SL_

_UZZl H
ITRANSFORMERrlRECT

TO 112o.8-wCOOLANTLOOPAT373
POWER

SYSTEM

CURRENT

AF_ I';'oo__wLIOUIDI
ICOOLANI.HEATI
I RECOUPED I

FIGURE 28. - MAGNETOPLASMADYNAMIC THRUSTER SYSTEM COMPONENTS,

PRIMARY MAGNETIC (jxB)
PRIMARY ACCELERAT ION ZONE

IONIZATION /, _'J._'-.....

THROAT _._ .... __l_p_.-_ _
DETERMINES SUPERSONIC CHANNEL

ELECTRICAL DETERMINES EXHAUST

CHARACTERISTICS CHARACTERISTICS

v (i" m) M (i,m)

FIGURE 29. - MAGNEFOPLASMADYNAMIC (MPD) THRUSTER.

ARC CURRENTS:
MAGNE I IC F IELD:

APPLIED

APPLIED _ //

SELF INDUCED 7 _-.. f //

/ _Y ,I,,A_//

FIGURE 30. - MAGNETOPLASMADYNAMIC ARC THRUSTER CURRENTS AND

FIELDS.

32



ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH
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FIGURE 33. - NERVA "FLIGHT ENGINE" CONFIGURATION.
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